UWFDM-827 Overview of the US-ITER Magnet Shield: Concept and Problems
نویسنده
چکیده
The International Thermonuclear Experimental Reactor (ITER) is designed to operate in two phases; physics and technology. The prime function of the shield is to protect the TF magnets. The predominant radiation limits are the nuclear heat load to the magnet and the end-of-life dose to the electrical insulator. These limits are specified by the magnet designers as 65 kW and 5×109 rads. Detailed shielding analysis has been performed and necessary machine modifications have been proposed during the conceptual design phase (1987-1990) in order to meet the magnet radiation limits. The shield is designed to satisfy the neutronics, thermal hydraulics, and mechanical design requirements. The reference shield consists of 316 SS structure and water coolant. A 5 cm thick back layer with special materials, such as W, Pb, and B4C, is considered outside the vacuum vessel to reduce the magnet damage. Two regions with critical shielding space are identified in ITER, the inboard and divertor regions. This paper presents the various options for the shield design based on a variety of shielding materials and summarizes the different analyses carried out to guide the shield design.
منابع مشابه
UWFDM-838 Three-Dimensional Neutronics Analysis for the US Magnet Shield of ITER
Detailed three-dimensional neutronics calculations have been performed for the U.S. design of the ITER magnet shield. The total nuclear heating in the TF coils is 35 kW in the technology phase and 42 kW in the physics phase. Using 5 cm thick W back shield layers behind the vacuum vessel in locations with limited shielding space results in acceptable local magnet damage levels. The parts of the ...
متن کاملUWFDM-1336 Overview of ARIES-CS In-Vessel Components: Integration of Nuclear, Economics, and Safety Constraints in Compact Stellarator
The recent development of the compact stellarator concept delivered ARIES-CS – a compact stellarator with 7.75 m average major radius, approaching that of tokamaks. In stellarators, the most influential engineering parameter that determines the machine size and cost is the minimum distance between the plasma boundary and mid-coil (∆min). Accommodating the breeding blanket and necessary shield w...
متن کاملUWFDM-1324 Nuclear Challenges and Progress in Designing Stellarator Power Plants
Over the past 2-3 decades, stellarator power plants have been studied in the U.S., Europe, and Japan as an alternate to the mainline magnetic fusion tokamaks, offering steady state operation and eliminating the risk of plasma disruptions. The earlier 1980s studies suggested large stellarators with an average major radius exceeding 20 m. The most recent development of the compact stellarator con...
متن کاملIaea - F 1 - Cn - 69 / Ftp / 13 Advanced Tokamak Burning Plasma Experiment
A new reduced size ITER-RC superconducting tokamak concept is proposed with the goals of studying burn physics either in an inductively driven standard tokamak (ST) mode of operation, or in a quasi-steady state advanced tokamak (AT) mode sustained by non-inductive means. This is achieved by reducing the radiation shield thickness protecting the superconducting magnet by 0.5 m relative to ITER a...
متن کامل